Do Flow Rates Respond Asymmetrically to Water Level? Evidence from the Edwards Aquifer
Bradley Ewing,
Teresa Kerr and
Mark Thompson
Journal of Applied Statistics, 2006, vol. 33, issue 10, 1121-1129
Abstract:
This research examines the time series relationship between the Comal Springs flow rate and the water level in the Edwards Aquifer (Well J-17). The empirical methodology utilizes threshold autoregression (TAR) and momentum-TAR models that allow for asymmetry in responses and adjustments to a disequilibrium in the long-run cointegrating relationship. Based on the results, an asymmetric error-correction model (AECM) is proposed to characterize the short-run and long-run dynamic relationship between spring flow and water level. The results have implications for the management of water resources, water demand, and ecosystems.
Keywords: Threshold cointegration; asymmetric adjustment; spring flow; water level; Edwards Aquifer (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600746905 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:10:p:1121-1129
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600746905
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().