The random intrinsic fast initial response of one-sided CUSUM charts
Alberto Luceno and
Jaime Puig-Pey
Journal of Applied Statistics, 2006, vol. 33, issue 2, 189-201
Abstract:
This article analyses the performance of a one-sided cumulative sum (CUSUM) chart that is initialized using a random starting point following the natural or intrinsic probability distribution of the CUSUM statistic. By definition, this probability distribution remains stable as the chart is used. The probability that the chart starts at zero according to this intrinsic distribution is always smaller than one, which confers on the chart a fast initial response feature. The article provides a fast and accurate algorithm to compute the in-control and out-of-control average run lengths and run-length probability distributions for one-sided CUSUM charts initialized using this random intrinsic fast initial response (RIFIR) scheme. The algorithm also computes the intrinsic distribution of the CUSUM statistic and random samples extracted from this distribution. Most importantly, no matter how the chart was initialized, if no level shifts and no alarms have occurred before time τ > 0, the distribution of the run length remaining after τ is provided by this algorithm very accurately, provided that τ is not too small.
Keywords: Average run length; cumulative sum charts; Gaussian quadrature; Markov chains; run-length distribution; statistical process control (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500250610 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:2:p:189-201
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500250610
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().