Graphical solutions for structural regression assist errors-in-variables modelling
Richard Woodhouse
Journal of Applied Statistics, 2006, vol. 33, issue 3, 241-255
Abstract:
Structural regression attempts to reveal an underlying relationship by compensating for errors in the variables. Ordinary least-squares regression has an entirely different purpose and provides a relationship between error-included variables. Structural model solutions, also known as the errors-in-variables and measurement-error solutions, use various inputs such as the error-variance ratio and x-error variance. This paper proposes that more accurate structural line gradient (coefficient) solutions will result from using the several solutions together as a system of equations. The known data scatter, as measured by the correlation coefficient, should always be used in choosing legitimate combinations of x- and y-error terms. However, this is difficult using equations. Chart solutions are presented to assist users to understand the structural regression process, to observe the correlation coefficient constraint, to assess the impact of their error estimates and, therefore, to provide better quality estimates of the structural regression gradient.
Keywords: Correlation coefficient constraint; error compensation; error-variance ratio; line fitting; measurement-error model (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760500445483 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:3:p:241-255
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760500445483
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().