Image segmentation using voronoi polygons and MCMC, with application to muscle fibre images
Ian Dryden,
Rahman Farnoosh and
Charles Taylor
Journal of Applied Statistics, 2006, vol. 33, issue 6, 609-622
Abstract:
We investigate a Bayesian method for the segmentation of muscle fibre images. The images are reasonably well approximated by a Dirichlet tessellation, and so we use a deformable template model based on Voronoi polygons to represent the segmented image. We consider various prior distributions for the parameters and suggest an appropriate likelihood. Following the Bayesian paradigm, the mathematical form for the posterior distribution is obtained (up to an integrating constant). We introduce a Metropolis-Hastings algorithm and a reversible jump Markov chain Monte Carlo algorithm (RJMCMC) for simulation from the posterior when the number of polygons is fixed or unknown. The particular moves in the RJMCMC algorithm are birth, death and position/colour changes of the point process which determines the location of the polygons. Segmentation of the true image was carried out using the estimated posterior mode and posterior mean. A simulation study is presented which is helpful for tuning the hyperparameters and to assess the accuracy. The algorithms work well on a real image of a muscle fibre cross-section image, and an additional parameter, which models the boundaries of the muscle fibres, is included in the final model.
Keywords: Coloured tessellation; Markov chain Monte Carlo; point pattern; regularity; reversible jump; Strauss process (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600679825 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:6:p:609-622
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600679825
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().