Symmetric quantiles and their applications
Yuang-Chin Chiang,
Lin-An Chen and
Hsien-Chueh Peter Yang
Journal of Applied Statistics, 2006, vol. 33, issue 8, 807-817
Abstract:
To develop estimators with stronger efficiencies than the trimmed means which use the empirical quantile, Kim (1992) and Chen & Chiang (1996), implicitly or explicitly used the symmetric quantile, and thus introduced new trimmed means for location and linear regression models, respectively. This study further investigates the properties of the symmetric quantile and extends its application in several aspects. (a) The symmetric quantile is more efficient than the empirical quantiles in asymptotic variances when quantile percentage α is either small or large. This reveals that for any proposal involving the α th quantile of small or large α s, the symmetric quantile is the right choice; (b) a trimmed mean based on it has asymptotic variance achieving a Cramer-Rao lower bound in one heavy tail distribution; (c) an improvement of the quantiles-based control chart by Grimshaw & Alt (1997) is discussed; (d) Monte Carlo simulations of two new scale estimators based on symmetric quantiles also support this new quantile.
Keywords: Regression quantile; scale estimator; trimmed mean (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600743464 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:8:p:807-817
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600743464
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().