Bivariate Negative Binomial Generalized Linear Models for Environmental Count Data
Masakazu Iwasaki and
Hiroe Tsubaki
Journal of Applied Statistics, 2006, vol. 33, issue 9, 909-923
Abstract:
We propose a new bivariate negative binomial model with constant correlation structure, which was derived from a contagious bivariate distribution of two independent Poisson mass functions, by mixing the proposed bivariate gamma type density with constantly correlated covariance structure (Iwasaki & Tsubaki, 2005), which satisfies the integrability condition of McCullagh & Nelder (1989, p. 334). The proposed bivariate gamma type density comes from a natural exponential family. Joe (1997) points out the necessity of a multivariate gamma distribution to derive a multivariate distribution with negative binomial margins, and the luck of a convenient form of multivariate gamma distribution to get a model with greater flexibility in a dependent structure with indices of dispersion. In this paper we first derive a new bivariate negative binomial distribution as well as the first two cumulants, and, secondly, formulate bivariate generalized linear models with a constantly correlated negative binomial covariance structure in addition to the moment estimator of the components of the matrix. We finally fit the bivariate negative binomial models to two correlated environmental data sets.
Keywords: Bivariate negative binomial generalized linear models (BIVARNB GLM); bivariate negative binomial distribution; bivariate gamma type GLM; bivariate count data analysis (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600744157 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:9:p:909-923
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600744157
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().