EconPapers    
Economics at your fingertips  
 

Wavelet Regression Technique for Streamflow Prediction

Murat Kucuk and Necati Ağirali-super-˙oğlu

Journal of Applied Statistics, 2006, vol. 33, issue 9, 943-960

Abstract: In order to explain many secret events of natural phenomena, analyzing non-stationary series is generally an attractive issue for various research areas. The wavelet transform technique, which has been widely used last two decades, gives better results than former techniques for the analysis of earth science phenomena and for feature detection of real measurements. In this study, a new technique is offered for streamflow modeling by using the discrete wavelet transform. This new technique depends on the feature detection characteristic of the wavelet transform. The model was applied to two geographical locations with different climates. The results were compared with energy variation and error values of models. The new technique offers a good advantage through a physical interpretation. This technique is applied to streamflow regression models, because they are simple and widely used in practical applications. However, one can apply this technique to other models.

Keywords: Streamflow prediction; discrete wavelet transform; hydrological modeling (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600744298 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:33:y:2006:i:9:p:943-960

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760600744298

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:33:y:2006:i:9:p:943-960