Testing and Merging Information for Effect Size Estimation
Noriah Al-Kandari,
Sana Buhamra and
S. E. Ahmed
Journal of Applied Statistics, 2007, vol. 34, issue 1, 47-60
Abstract:
A large-sample test for testing the equality of two effect sizes is presented. The null and non-null distributions of the proposed test statistic are derived. Further, the problem of estimating the effect size is considered when it is a priori suspected that two effect sizes may be close to each other. The combined data from all the samples leads to more efficient estimator of the effect size. We propose a basis for optimally combining estimation problems when there is uncertainty concerning the appropriate statistical model-estimator to use in representing the sampling process. The objective here is to produce natural adaptive estimators with some good statistical properties. In the context of two bivariate statistical models, the expressions for the asymptotic mean squared error of the proposed estimators are derived and compared with the parallel expressions for the benchmark estimators. We demonstrate that the suggested preliminary test estimator has superior asymptotic mean squared error performance relative to the benchmark and pooled estimators. A simulation study and application of the methodology to real data are presented.
Keywords: Effect size; pooling; preliminary test estimator; large-sample properties (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600994604 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:1:p:47-60
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600994604
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().