Estimation Methods of the Long Memory Parameter: Monte Carlo Analysis and Application
Mohamed Boutahar,
Velayoudom Marimoutou and
Leila Nouira
Journal of Applied Statistics, 2007, vol. 34, issue 3, 261-301
Abstract:
Since the seminal paper of Granger & Joyeux (1980), the concept of a long memory has focused the attention of many statisticians and econometricians trying to model and measure the persistence of stationary processes. Many methods for estimating d, the long-range dependence parameter, have been suggested since the work of Hurst (1951). They can be summarized in three classes: the heuristic methods, the semi-parametric methods and the maximum likelihood methods. In this paper, we try by simulation, to verify the two main properties of d-super-ˆ: the consistency and the asymptotic normality. Hence, it is very important for practitioners to compare the performance of the various classes of estimators. The results indicate that only the semi-parametric and the maximum likelihood methods can give good estimators. They also suggest that the AR component of the ARFIMA (1, d, 0) process has an important impact on the properties of the different estimators and that the Whittle method is the best one, since it has the small mean squared error. We finally carry out an empirical application using the monthly seasonally adjusted US Inflation series, in order to illustrate the usefulness of the different estimation methods in the context of using real data.
Keywords: Long memory; ARFIMA ( p d q ) process; fractional Gaussian noise; Monte Carlo study (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760601004874 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:3:p:261-301
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760601004874
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().