Least Trimmed Squares Estimator in the Errors-in-Variables Model
Kang-Mo Jung
Journal of Applied Statistics, 2007, vol. 34, issue 3, 331-338
Abstract:
We propose a robust estimator in the errors-in-variables model using the least trimmed squares estimator. We call this estimator the orthogonal least trimmed squares (OLTS) estimator. We show that the OLTS estimator has the high breakdown point and appropriate equivariance properties. We develop an algorithm for the OLTS estimate. Simulations are performed to compare the efficiencies of the OLTS estimates with the total least squares (TLS) estimates and a numerical example is given to illustrate the effectiveness of the estimate.
Keywords: Breakdown point; equivariance; errors-in-variables model; least trimmed squares estimator; orthogonal regression (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760601004973 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:3:p:331-338
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760601004973
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().