Monitoring Variability and Analyzing Multivariate Autocorrelated Processes
Jeffrey Jarrett () and
Xia Pan
Journal of Applied Statistics, 2007, vol. 34, issue 4, 459-469
Abstract:
Traditional multivariate quality control charts are based on independent observations. In this paper, we explain how to extend univariate residual charts to multivariate cases and how to combine the traditional statistical process control (SPC) approaches to monitor changes in process variability in a dynamic environment. We propose using Alt's (1984) W chart on vector autoregressive (VAR) residuals to monitor the variability for multivariate processes in the presence of autocorrelation. We study examples jointly using the Hotelling T2 chart on VAR residuals, the W chart, and the Portmanteau test to diagnose the types of shift in process parameters.
Keywords: SPC; variability shift; quality control for multivariate and serially correlated processes; vector autoregressive (VAR) residuals; diagnosing types of parameter shift (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701231849 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:4:p:459-469
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760701231849
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().