Case-deletion Influence Measures for the Data from Multivariate t Distributions
Feng-Chang Xie,
Bo-Cheng Wei and
Jin-Guan Lin
Journal of Applied Statistics, 2007, vol. 34, issue 8, 907-921
Abstract:
For the data from multivariate t distributions, it is very hard to make an influence analysis based on the probability density function since its expression is intractable. In this paper, we present a technique for influence analysis based on the mixture distribution and EM algorithm. In fact, the multivariate t distribution can be considered as a particular Gaussian mixture by introducing the weights from the Gamma distribution. We treat the weights as the missing data and develop the influence analysis for the data from multivariate t distributions based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm. Several case-deletion measures are proposed for detecting influential observations from multivariate t distributions. Two numerical examples are given to illustrate our methodology.
Keywords: Multivariate t distribution; influence analysis; EM algorithm; case-deletion; generalized Cook distance (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701590574 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:8:p:907-921
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760701590574
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().