EconPapers    
Economics at your fingertips  
 

Multivariate Capability Indices: Distributional and Inferential Properties

W. L. Pearn, F. K. Wang and C. H. Yen

Journal of Applied Statistics, 2007, vol. 34, issue 8, 941-962

Abstract: Process capability indices have been widely used in the manufacturing industry for measuring process reproduction capability according to manufacturing specifications. Properties of the univariate processes have been investigated extensively, but are comparatively neglected for multivariate processes where multiple dependent characteristics are involved in quality measurement. In this paper, we consider two commonly used multivariate capability indices MCp and MCpm, to evaluate multivariate process capability. We investigate the statistical properties of the estimated MCp and obtain the lower confidence bound for MCp. We also consider testing MCp, and provide critical values for testing if a multivariate process meets the preset capability requirement. In addition, an approximate confidence interval for MCpm is derived. A simulation study is conducted to ascertain the accuracy of the approximation. Three examples are presented to illustrate the applicability of the obtained results.

Keywords: Multivariate capability index; lower confidence bound; hypothesis testing; critical value (search for similar items in EconPapers)
Date: 2007
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701590475 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:8:p:941-962

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760701590475

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:34:y:2007:i:8:p:941-962