EconPapers    
Economics at your fingertips  
 

A Bayesian Adjustment for Covariate Misclassification with Correlated Binary Outcome Data

Dianxu Ren and Roslyn Stone

Journal of Applied Statistics, 2007, vol. 34, issue 9, 1019-1034

Abstract: Estimated associations between an outcome variable and misclassified covariates tend to be biased when the methods of estimation that ignore the classification error are applied. Available methods to account for misclassification often require the use of a validation sample (i.e. a gold standard). In practice, however, such a gold standard may be unavailable or impractical. We propose a Bayesian approach to adjust for misclassification in a binary covariate in the random effect logistic model when a gold standard is not available. This Markov Chain Monte Carlo (MCMC) approach uses two imperfect measures of a dichotomous exposure under the assumptions of conditional independence and non-differential misclassification. A simulated numerical example and a real clinical example are given to illustrate the proposed approach. Our results suggest that the estimated log odds of inpatient care and the corresponding standard deviation are much larger in our proposed method compared with the models ignoring misclassification. Ignoring misclassification produces downwardly biased estimates and underestimate uncertainty.

Keywords: Bayesian approach; misclassification; logistic model; random effect logistic model; MCMC (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701591895 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:34:y:2007:i:9:p:1019-1034

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760701591895

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:34:y:2007:i:9:p:1019-1034