EconPapers    
Economics at your fingertips  
 

Aspects on the control of false alarms in statistical surveillance and the impact on the return of financial decision systems

David Bock

Journal of Applied Statistics, 2008, vol. 35, issue 2, 213-227

Abstract: In systems for online detection of regime shifts, a process is continually observed. Based on the data available an alarm is given when there is enough evidence of a change. There is a risk of a false alarm and here two different ways of controlling the false alarms are compared: a fixed average run length until the first false alarm and a fixed probability of any false alarm (fixed size). The two approaches are evaluated in terms of the timeliness of alarms. A system with a fixed size is found to have a drawback: the ability to detect a change deteriorates with the time of the change. Consequently, the probability of successful detection will tend to zero and the expected delay of a motivated alarm tends to infinity. This drawback is present even when the size is set to be very large (close to one). Utility measures expressing the costs for a false or a too late alarm are used in the comparison. How the choice of the best approach can be guided by the parameters of the process and the different costs of alarms is demonstrated. The technique is illustrated by financial transactions of the Hang Seng Index.

Keywords: monitoring; surveillance; repeated decisions; moving average; Shewhart method (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701775431 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:2:p:213-227

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760701775431

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:35:y:2008:i:2:p:213-227