Computation aspects of the parameter estimates of linear mixed effects model in multivariate repeated measures set-up
Anuradha Roy
Journal of Applied Statistics, 2008, vol. 35, issue 3, 307-320
Abstract:
The number of parameters mushrooms in a linear mixed effects (LME) model in the case of multivariate repeated measures data. Computation of these parameters is a real problem with the increase in the number of response variables or with the increase in the number of time points. The problem becomes more intricate and involved with the addition of additional random effects. A multivariate analysis is not possible in a small sample setting. We propose a method to estimate these many parameters in bits and pieces from baby models, by taking a subset of response variables at a time, and finally using these bits and pieces at the end to get the parameter estimates for the mother model, with all variables taken together. Applying this method one can calculate the fixed effects, the best linear unbiased predictions (BLUPs) for the random effects in the model, and also the BLUPs at each time of observation for each response variable, to monitor the effectiveness of the treatment for each subject. The proposed method is illustrated with an example of multiple response variables measured over multiple time points arising from a clinical trial in osteoporosis.
Keywords: best linear unbiased prediction; covariance structures; linear mixed effects model; multivariate repeated measures data (search for similar items in EconPapers)
Date: 2008
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701833271 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:3:p:307-320
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760701833271
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().