Bayesian non-parametric models for regional prevalence estimation
Adam Branscum,
Timothy Hanson and
Ian Gardner
Journal of Applied Statistics, 2008, vol. 35, issue 5, 567-582
Abstract:
We developed a flexible non-parametric Bayesian model for regional disease-prevalence estimation based on cross-sectional data that are obtained from several subpopulations or clusters such as villages, cities, or herds. The subpopulation prevalences are modeled with a mixture distribution that allows for zero prevalence. The distribution of prevalences among diseased subpopulations is modeled as a mixture of finite Polya trees. Inferences can be obtained for (1) the proportion of diseased subpopulations in a region, (2) the distribution of regional prevalences, (3) the mean and median prevalence in the region, (4) the prevalence of any sampled subpopulation, and (5) predictive distributions of prevalences for regional subpopulations not included in the study, including the predictive probability of zero prevalence. We focus on prevalence estimation using data from a single diagnostic test, but we also briefly discuss the scenario where two conditionally dependent (or independent) diagnostic tests are used. Simulated data demonstrate the utility of our non-parametric model over parametric analysis. An example involving brucellosis in cattle is presented.
Keywords: disease-prevalence estimation; Polya trees; prediction (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760701835862 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:5:p:567-582
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760701835862
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().