Optimal lag-length choice in stable and unstable VAR models under situations of homoscedasticity and ARCH
R. Scott Hacker and
Abdulnasser Hatemi-J
Journal of Applied Statistics, 2008, vol. 35, issue 6, 601-615
Abstract:
The performance of different information criteria – namely Akaike, corrected Akaike (AICC), Schwarz–Bayesian (SBC), and Hannan–Quinn – is investigated so as to choose the optimal lag length in stable and unstable vector autoregressive (VAR) models both when autoregressive conditional heteroscedasticity (ARCH) is present and when it is not. The investigation covers both large and small sample sizes. The Monte Carlo simulation results show that SBC has relatively better performance in lag-choice accuracy in many situations. It is also generally the least sensitive to ARCH regardless of stability or instability of the VAR model, especially in large sample sizes. These appealing properties of SBC make it the optimal criterion for choosing lag length in many situations, especially in the case of financial data, which are usually characterized by occasional periods of high volatility. SBC also has the best forecasting abilities in the majority of situations in which we vary sample size, stability, variance structure (ARCH or not), and forecast horizon (one period or five). frequently, AICC also has good lag-choosing and forecasting properties. However, when ARCH is present, the five-period forecast performance of all criteria in all situations worsens.
Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (36)
Downloads: (external link)
http://hdl.handle.net/10.1080/02664760801920473 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:6:p:601-615
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760801920473
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().