EconPapers    
Economics at your fingertips  
 

Analysis of growth curve data by using cubic smoothing splines

Tapio Nummi and Laura Koskela

Journal of Applied Statistics, 2008, vol. 35, issue 6, 681-691

Abstract: Longitudinal data frequently arises in various fields of applied sciences where individuals are measured according to some ordered variable, e.g. time. A common approach used to model such data is based on the mixed models for repeated measures. This model provides an eminently flexible approach to modeling of a wide range of mean and covariance structures. However, such models are forced into a rigidly defined class of mathematical formulas which may not be well supported by the data within the whole sequence of observations. A possible non-parametric alternative is a cubic smoothing spline, which is highly flexible and has useful smoothing properties. It can be shown that under normality assumption, the solution of the penalized log-likelihood equation is the cubic smoothing spline, and this solution can be further expressed as a solution of the linear mixed model. It is shown here how cubic smoothing splines can be easily used in the analysis of complete and balanced data. Analysis can be greatly simplified by using the unweighted estimator studied in the paper. It is shown that if the covariance structure of random errors belong to certain class of matrices, the unweighted estimator is the solution to the penalized log-likelihood function. This result is new in smoothing spline context and it is not only confined to growth curve settings. The connection to mixed models is used in developing a rough testing of group profiles. Numerical examples are presented to illustrate the techniques proposed.

Date: 2008
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/02664760801923964 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:6:p:681-691

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760801923964

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:35:y:2008:i:6:p:681-691