On the efficiency of regression analysis with AR(p) errors
Teresa Alpuim and
Abdel El-Shaarawi
Journal of Applied Statistics, 2008, vol. 35, issue 7, 717-737
Abstract:
In this paper we will consider a linear regression model with the sequence of error terms following an autoregressive stationary process. The statistical properties of the maximum likelihood and least squares estimators of the regression parameters will be summarized. Then, it will be proved that, for some typical cases of the design matrix, both methods produce asymptotically equivalent estimators. These estimators are also asymptotically efficient. Such cases include the most commonly used models to describe trend and seasonality like polynomial trends, dummy variables and trigonometric polynomials. Further, a very convenient asymptotic formula for the covariance matrix will be derived. It will be illustrated through a brief simulation study that, for the simple linear trend model, the result applies even for sample sizes as small as 20.
Keywords: linear regression; autoregressive stationary process; maximum likelihood; least squares; trend; seasonality; linear difference equation (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760600679775 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:7:p:717-737
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760600679775
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().