New inference procedures for generalized Poisson distributions
Simos Meintanis
Journal of Applied Statistics, 2008, vol. 35, issue 7, 751-762
Abstract:
A common feature for compound Poisson and Katz distributions is that both families may be viewed as generalizations of the Poisson law. In this paper, we present a unified approach in testing the fit to any distribution belonging to either of these families. The test involves the probability generating function, and it is shown to be consistent under general alternatives. The asymptotic null distribution of the test statistic is obtained, and an effective bootstrap procedure is employed in order to investigate the performance of the proposed test with real and simulated data. Comparisons with classical methods based on the empirical distribution function are also included.
Keywords: empirical probability generating function; compound Poisson distribution; goodness-of-fit test; Katz laws (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760801997174 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:7:p:751-762
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760801997174
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().