Statistical inference for start-up demonstration tests with rejection of units upon observing d failures
P. S. Chan,
H. K. T. Ng and
N. Balakrishnan
Journal of Applied Statistics, 2008, vol. 35, issue 8, 867-878
Abstract:
In this paper, we consider the statistical inference for the success probability in the case of start-up demonstration tests in which rejection of units is possible when a pre-fixed number of failures is observed before the required number of consecutive successes are achieved for acceptance of the unit. Since the expected value of the stopping time is not a monotone function of the unknown parameter, the method of moments is not useful in this situation. Therefore, we discuss two estimation methods for the success probability: (1) the maximum likelihood estimation (MLE) via the expectation-maximization (EM) algorithm and (2) Bayesian estimation with a beta prior. We examine the small-sample properties of the MLE and Bayesian estimator. Finally, we present an example to illustrate the method of inference discussed here.
Keywords: start-up demonstration test; maximum likelihood estimator; EM-algorithm; runs; Bayesian estimation; probability generating function (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802124455 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:8:p:867-878
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802124455
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().