A sequential procedure for testing the existence of a random walk model in finite samples
George Halkos and
Ilias Kevork ()
Journal of Applied Statistics, 2008, vol. 35, issue 8, 909-925
Abstract:
Given the random walk model, we show, for the traditional unrestricted regression used in testing stationarity, that no matter what the initial value of the random walk is or its drift or its error standard deviation, the sampling distributions of certain statistics remain unchanged. Using Monte Carlo simulations, we estimate, for different finite samples, the sampling distributions of these statistics. After smoothing the percentiles of the empirical sampling distributions, we come up with a new set of critical values for testing the existence of a random walk, if each statistic is being used on an individual base. Combining the new sets of critical values, we finally suggest a general methodology for testing for a random walk model.
Keywords: random walk; critical values; uncertainty (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802185290 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:8:p:909-925
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802185290
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().