EconPapers    
Economics at your fingertips  
 

The analysis of age-specific fertility patterns via logistic models

Cristina Rueda-Sabater and Pedro Alvarez-Esteban

Journal of Applied Statistics, 2008, vol. 35, issue 9, 1053-1070

Abstract: In this paper, we introduce logistic models to analyse fertility curves. The models are formulated as linear models of the log odds of fertility and are defined in terms of parameters that are interpreted as measures of level, location and shape of the fertility schedule. This parameterization is useful for the evaluation, and interpretation of fertility trends and projections of future period fertility. For a series of years, the proposed models admit a state-space formulation that allows a coherent joint estimation of parameters and forecasting. The main features of the models compared with other alternatives are the functional simplicity, the flexibility, and the interpretability of the parameters. These and other features are analysed in this paper using examples and theoretical results. Data from different countries are analysed, and to validate the logistic approach, we compare the goodness of fit of the new model against well-known alternatives; the analysis gives superior results in most developed countries.

Keywords: logistic model; fertility schedule; state-space model; maximum-likelihood estimation; Tempo; quantum (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802192999 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:35:y:2008:i:9:p:1053-1070

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802192999

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:35:y:2008:i:9:p:1053-1070