Soccer matches as experiments: how often does the 'best' team win?
G. K. Skinner and
G. H. Freeman
Journal of Applied Statistics, 2009, vol. 36, issue 10, 1087-1095
Abstract:
Models in which the number of goals scored by a team in a soccer match follow a Poisson distribution, or a closely related one, have been widely discussed. We here consider a soccer match as an experiment to assess which of two teams is superior and examine the probability that the outcome of the experiment (match) truly represents the relative abilities of the two teams. Given a final score, it is possible by using a Bayesian approach to quantify the probability that it was or was not the case that 'the best team won'. For typical scores, the probability of a misleading result is significant. Modifying the rules of the game to increase the typical number of goals scored would improve the situation, but a level of confidence that would normally be regarded as satisfactory could not be obtained unless the character of the game was radically changed.
Keywords: football; soccer; experiment design; Poisson statistics; Bayesian (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802715922 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:10:p:1087-1095
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802715922
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().