EconPapers    
Economics at your fingertips  
 

On the asymptotic distribution of Cook's distance in logistic regression models

Nirian Martin and Leandro Pardo

Journal of Applied Statistics, 2009, vol. 36, issue 10, 1119-1146

Abstract: It sometimes occurs that one or more components of the data exert a disproportionate influence on the model estimation. We need a reliable tool for identifying such troublesome cases in order to decide either eliminate from the sample, when the data collect was badly realized, or otherwise take care on the use of the model because the results could be affected by such components. Since a measure for detecting influential cases in linear regression setting was proposed by Cook [Detection of influential observations in linear regression, Technometrics 19 (1977), pp. 15-18.], apart from the same measure for other models, several new measures have been suggested as single-case diagnostics. For most of them some cutoff values have been recommended (see [D.A. Belsley, E. Kuh, and R.E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, 2nd ed., John Wiley & Sons, New York, Chichester, Brisban, (2004).], for instance), however the lack of a quantile type cutoff for Cook's statistics has induced the analyst to deal only with index plots as worthy diagnostic tools. Focussed on logistic regression, the aim of this paper is to provide the asymptotic distribution of Cook's distance in order to look for a meaningful cutoff point for detecting influential and leverage observations.

Keywords: Cook's distance; logistic regression; maximum likelihood estimation; outlier; leverage (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802562498 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:10:p:1119-1146

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802562498

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:10:p:1119-1146