EconPapers    
Economics at your fingertips  
 

Predicting daily highs and lows of exchange rates: a cointegration analysis

Angela He and Alan Wan ()

Journal of Applied Statistics, 2009, vol. 36, issue 11, 1191-1204

Abstract: This article presents empirical evidence that links the daily highs and lows of exchange rates of the US dollar against two other major currencies over a 15 year period. We find that the log high and log low of an exchange rate are cointegrated, and the error correction term is well-approximated by the range, which is defined as the difference between the log high and log low. We further assess the empirical relevance of jointly analyzing the highs, lows and the ranges by comparing the range forecasts generated from the cointegration framework with those from random walk and autoregressive integrated moving average (ARIMA) specifications. The ability of range forecasts as predictors of implied volatility for a European style currency option is also evaluated. Our results show that aside from a limited set of exceptions, the cointegration framework generally outperforms the random walk and ARIMA models in an out-of-sample forecast contest.

Keywords: daily high; daily low; direction of change; implied volatility; VECM (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802578304 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:11:p:1191-1204

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802578304

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:11:p:1191-1204