EconPapers    
Economics at your fingertips  
 

Nonparametric analysis of aggregate loss models

J. M. Vilar, R. Cao, M. C. Ausin and C. Gonzalez-Fragueiro

Journal of Applied Statistics, 2009, vol. 36, issue 2, 149-166

Abstract: This paper describes a nonparametric approach to make inferences for aggregate loss models in the insurance framework. We assume that an insurance company provides a historical sample of claims given by claim occurrence times and claim sizes. Furthermore, information may be incomplete as claims may be censored and/or truncated. In this context, the main goal of this work consists of fitting a probability model for the total amount that will be paid on all claims during a fixed future time period. In order to solve this prediction problem, we propose a new methodology based on nonparametric estimators for the density functions with censored and truncated data, the use of Monte Carlo simulation methods and bootstrap resampling. The developed methodology is useful to compare alternative pricing strategies in different insurance decision problems. The proposed procedure is illustrated with a real dataset provided by the insurance department of an international commercial company.

Keywords: aggregate loss models; kernel estimator; Monte Carlo method; bootstrap; censored and truncated claims (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802443921 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:2:p:149-166

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802443921

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:2:p:149-166