EconPapers    
Economics at your fingertips  
 

Monitoring correlated processes with binomial marginals

Christian Weiss

Journal of Applied Statistics, 2009, vol. 36, issue 4, 399-414

Abstract: Few approaches for monitoring autocorrelated attribute data have been proposed in the literature. If the marginal process distribution is binomial, then the binomial AR(1) model as a realistic and well-interpretable process model may be adequate. Based on known and newly derived statistical properties of this model, we shall develop approaches to monitor a binomial AR(1) process, and investigate their performance in a simulation study. A case study demonstrates the applicability of the binomial AR(1) model and of the proposed control charts to problems from statistical process control.

Keywords: binomial AR(1) models; statistical process control; control charts; case study (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802468803 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:4:p:399-414

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802468803

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:4:p:399-414