A copula-based Markov chain model for the analysis of binary longitudinal data
Gabriel Escarela,
Luis Carlos Perez-Ruiz and
Russell Bowater
Journal of Applied Statistics, 2009, vol. 36, issue 6, 647-657
Abstract:
A fully parametric first-order autoregressive (AR(1)) model is proposed to analyse binary longitudinal data. By using a discretized version of a copula, the modelling approach allows one to construct separate models for the marginal response and for the dependence between adjacent responses. In particular, the transition model that is focused on discretizes the Gaussian copula in such a way that the marginal is a Bernoulli distribution. A probit link is used to take into account concomitant information in the behaviour of the underlying marginal distribution. Fixed and time-varying covariates can be included in the model. The method is simple and is a natural extension of the AR(1) model for Gaussian series. Since the approach put forward is likelihood-based, it allows interpretations and inferences to be made that are not possible with semi-parametric approaches such as those based on generalized estimating equations. Data from a study designed to reduce the exposure of children to the sun are used to illustrate the methods.
Keywords: copula; discrete time series; Markov regression models; maximum likelihood; probit regression model; serial correlation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802499287 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:6:p:647-657
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802499287
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().