EconPapers    
Economics at your fingertips  
 

Bayesian inference method for model validation and confidence extrapolation

Xiaomo Jiang and Sankaran Mahadevan

Journal of Applied Statistics, 2009, vol. 36, issue 6, 659-677

Abstract: This paper presents a Bayesian-hypothesis-testing-based methodology for model validation and confidence extrapolation under uncertainty, using limited test data. An explicit expression of the Bayes factor is derived for the interval hypothesis testing. The interval method is compared with the Bayesian point null hypothesis testing approach. The Bayesian network with Markov Chain Monte Carlo simulation and Gibbs sampling is explored for extrapolating the inference from the validated domain at the component level to the untested domain at the system level. The effect of the number of experiments on the confidence in the model validation decision is investigated. The probabilities of Type I and Type II errors in decision-making during the model validation and confidence extrapolation are quantified. The proposed methodologies are applied to a structural mechanics problem. Numerical results demonstrate that the Bayesian methodology provides a quantitative approach to facilitate rational decisions in model validation and confidence extrapolation under uncertainty.

Keywords: Bayesian statistics; Bayes factor; hypothesis testing; model validation; extrapolation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802499295 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:6:p:659-677

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802499295

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:6:p:659-677