Archimedean copulae for risk measurement
Giovanni De Luca () and
Giorgia Rivieccio
Journal of Applied Statistics, 2009, vol. 36, issue 8, 907-924
Abstract:
In this paper some Archimedean copula functions for bivariate financial returns are studied. The choice of this family is due to their ability to capture the tail dependence, which is an association measure we can detect in many bivariate financial time-series. A time-varying version of these copulae is also investigated. Finally, the Value-at-Risk is computed and its performance is compared across different copula specifications.
Keywords: copula; time-varying parameters; daily equity returns; risk management; value-at-risk (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802520785 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:8:p:907-924
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802520785
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().