EconPapers    
Economics at your fingertips  
 

Analysis of robust design experiments with time-dependent ordinal response characteristics: a quality improvement study from the horticulture industry

N. R. Parsons, S. G. Gilmour and R. N. Edmondson

Journal of Applied Statistics, 2009, vol. 36, issue 9, 1037-1054

Abstract: An approach to the analysis of time-dependent ordinal quality score data from robust design experiments is developed and applied to an experiment from commercial horticultural research, using concepts of product robustness and longevity that are familiar to analysts in engineering research. A two-stage analysis is used to develop models describing the effects of a number of experimental treatments on the rate of post-sales product quality decline. The first stage uses a polynomial function on a transformed scale to approximate the quality decline for an individual experimental unit using derived coefficients and the second stage uses a joint mean and dispersion model to investigate the effects of the experimental treatments on these derived coefficients. The approach, developed specifically for an application in horticulture, is exemplified with data from a trial testing ornamental plants that are subjected to a range of treatments during production and home-life. The results of the analysis show how a number of control and noise factors affect the rate of post-production quality decline. Although the model is used to analyse quality data from a trial on ornamental plants, the approach developed is expected to be more generally applicable to a wide range of other complex production systems.

Keywords: joint mean-dispersion model; ordinal scores; proportional odds model; robust product design; two-stage analysis (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802566796 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:36:y:2009:i:9:p:1037-1054

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802566796

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:36:y:2009:i:9:p:1037-1054