Random effects regression models for count data with excess zeros in caries research
D. Todem,
Y. Zhang,
A. Ismail and
W. Sohn
Journal of Applied Statistics, 2010, vol. 37, issue 10, 1661-1679
Abstract:
We extend the family of Poisson and negative binomial models to derive the joint distribution of clustered count outcomes with extra zeros. Two random effects models are formulated. The first model assumes a shared random effects term between the conditional probability of perfect zeros and the conditional mean of the imperfect state. The second formulation relaxes the shared random effects assumption by relating the conditional probability of perfect zeros and the conditional mean of the imperfect state to two different but correlated random effects variables. Under the conditional independence and the missing data at random assumption, a direct optimization of the marginal likelihood and an EM algorithm are proposed to fit the proposed models. Our proposed models are fitted to dental caries counts of children under the age of six in the city of Detroit.
Keywords: adaptive Gaussian quadrature; dental caries scores; clustered data; factor loadings; inflated zeros; negative binomial/Poisson distribution; random effects (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903127605 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:10:p:1661-1679
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903127605
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().