Bayesian tests for unit root and multiple breaks
Man-Suk Oh and
Dong Wan Shin
Journal of Applied Statistics, 2010, vol. 37, issue 11, 1863-1874
Abstract:
A Bayesian approach is considered for identifying sources of nonstationarity for models with a unit root and breaks. Different types of multiple breaks are allowed through crash models, changing growth models, and mixed models. All possible nonstationary models are represented by combinations of zero or nonzero parameters associated with time trends, dummy for breaks, or previous levels, for which Bayesian posterior probabilities are computed. Multiple tests based on Markov chain Monte Carlo procedures are implemented. The proposed method is applied to a real data set, the Korean GDP data set, showing a strong evidence for two breaks rather than the usual unit root or one break.
Keywords: multiple breaks; unit root test; Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903173450 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:11:p:1863-1874
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903173450
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().