Simple and multiple correspondence analysis for ordinal-scale variables using orthogonal polynomials
Rosaria Lombardo and
Eric Beh ()
Journal of Applied Statistics, 2010, vol. 37, issue 12, 2101-2116
Abstract:
Correspondence analysis (CA) has gained a reputation for being a very useful statistical technique for determining the nature of association between two or more categorical variables. For simple and multiple CA, the singular value decomposition (SVD) is the primary tool used and allows the user to construct a low-dimensional space to visualize this association. As an alternative to SVD, one may consider the bivariate moment decomposition (BMD), a method of decomposition that involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, a hybrid decomposition (HD) is formed. The aim of this paper is to show the applicability of HD when performing simple and multiple CA.
Keywords: multiple correspondence analysis; ordinal-scale variables; singular value decomposition; bivariate moment decomposition; orthogonal polynomials; hybrid decomposition (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903247692 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:12:p:2101-2116
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903247692
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().