Inference on Cpk for autocorrelated data in the presence of random measurement errors
Michele Scagliarini
Journal of Applied Statistics, 2010, vol. 37, issue 1, 147-158
Abstract:
The present paper examines the properties of the Cpk estimator when observations are autocorrelated and affected by measurement errors. The underlying reason for this choice of subject matter is that in industrial applications, process data are often autocorrelated, especially when sampling frequency is not particularly low, and even with the most advanced measuring instruments, gauge imprecision needs to be taken into consideration. In the case of a first-order stationary autoregressive process, we compare the statistical properties of the estimator in the error case with those of the estimator in the error-free case. Results indicate that the presence of gauge measurement errors leads the estimator to behave differently depending on the entity of error variability.
Keywords: process capability indices; gauge measurement errors; autocorrelation; estimator; process specifications (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902914482 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:1:p:147-158
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902914482
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().