EconPapers    
Economics at your fingertips  
 

Testing for spurious and cointegrated regressions: A wavelet approach

Chee Kian Leong and Weihong Huang ()

Journal of Applied Statistics, 2010, vol. 37, issue 2, 215-233

Abstract: This paper proposes a wavelet-based approach to analyze spurious and cointegrated regressions in time series. The approach is based on the properties of the wavelet covariance and correlation in Monte Carlo studies of spurious and cointegrated regression. In the case of the spurious regression, the null hypotheses of zero wavelet covariance and correlation for these series across the scales fail to be rejected. Conversely, these null hypotheses across the scales are rejected for the cointegrated bivariate time series. These nonresidual-based tests are then applied to analyze if any relationship exists between the extraterrestrial phenomenon of sunspots and the earthly economic time series of oil prices. Conventional residual-based tests appear sensitive to the specification in both the cointegrating regression and the lag order in the augmented Dickey-Fuller tests on the residuals. In contrast, the wavelet tests, with their bootstrap t-statistics and confidence intervals, detect the spuriousness of this relationship.

Keywords: spurious regression; cointegration; wavelet covariance and correlation; Monte Carlo simulations; bootstrap (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802638082 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:2:p:215-233

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760802638082

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-31
Handle: RePEc:taf:japsta:v:37:y:2010:i:2:p:215-233