On the comparison of the Fisher information of the log-normal and generalized Rayleigh distributions
Fawziah Alshunnar,
Mohammad Raqab and
Debasis Kundu
Journal of Applied Statistics, 2010, vol. 37, issue 3, 391-404
Abstract:
Surles and Padgett recently considered two-parameter Burr Type X distribution by introducing a scale parameter and called it the generalized Rayleigh distribution. It is observed that the generalized Rayleigh and log-normal distributions have many common properties and both distributions can be used quite effectively to analyze skewed data set. In this paper, we mainly compare the Fisher information matrices of the two distributions for complete and censored observations. Although, both distributions may provide similar data fit and are quite similar in nature in many aspects, the corresponding Fisher information matrices can be quite different. We compute the total information measures of the two distributions for different parameter ranges and also compare the loss of information due to censoring. Real data analysis has been performed for illustrative purposes.
Keywords: Fisher information matrix; Burr Type X distribution; generalized Rayleigh distribution; log-normal distribution; left censoring; right censoring (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760802698961 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:3:p:391-404
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760802698961
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().