Quantifying R2 bias in the presence of measurement error
Karl Majeske,
Terri Lynch-Caris and
Janet Brelin-Fornari
Journal of Applied Statistics, 2010, vol. 37, issue 4, 667-677
Abstract:
Measurement error (ME) is the difference between the true unknown value of a variable and the data assigned to that variable during the measuring process. The multiple correlation coefficient quantifies the strength of the relationship between the dependent and independent variable(s) in regression modeling. In this paper, we show that ME in the dependent variable results in a negative bias in the multiple correlation coefficient, making the relationship appear weaker than it should. The adjusted R2 provides regression modelers an unbiased estimate of the multiple correlation coefficient. However, due to the ME induced bias in the multiple correlation coefficient, the otherwise unbiased adjusted R2 under-estimates the variance explained by a regression model. This paper proposes two statistics for estimating the multiple correlation coefficient, both of which take into account the ME in the dependent variable. The first statistic uses all unbiased estimators, but may produce values outside the [0,1] interval. The second statistic requires modeling a single data set, created by including descriptive variables on the subjects used in a gage study. Based on sums of squares, the statistic has the properties of an R2: it measures the proportion of variance explained; has values restricted to the [0,1] interval; and the endpoints indicate no variance explained and all variance explained respectively. We demonstrate the methodology using data from a study of cervical spine range of motion in children.
Keywords: measurement error; regression analysis; R2; bias correction; gage R&R (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902814542 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:4:p:667-677
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902814542
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().