Lag order selection for an optimal autoregressive covariance matrix estimator
Marco Morales
Journal of Applied Statistics, 2010, vol. 37, issue 5, 739-748
Abstract:
A good parametric spectral estimator requires an accurate estimate of the sum of AR coefficients, however a criterion which minimizes the innovation variance not necessarily yields the best spectral estimate. This paper develops an alternative information criterion considering the bias in the sum of the parameters for the autoregressive estimator of the spectral density at frequency zero.
Keywords: Spectral density; covariance matrix; autoregressive; lag-order selection; statistical inference (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902873969 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:5:p:739-748
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902873969
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().