EconPapers    
Economics at your fingertips  
 

Lag order selection for an optimal autoregressive covariance matrix estimator

Marco Morales

Journal of Applied Statistics, 2010, vol. 37, issue 5, 739-748

Abstract: A good parametric spectral estimator requires an accurate estimate of the sum of AR coefficients, however a criterion which minimizes the innovation variance not necessarily yields the best spectral estimate. This paper develops an alternative information criterion considering the bias in the sum of the parameters for the autoregressive estimator of the spectral density at frequency zero.

Keywords: Spectral density; covariance matrix; autoregressive; lag-order selection; statistical inference (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902873969 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:5:p:739-748

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760902873969

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:37:y:2010:i:5:p:739-748