A permutation test for multivariate data with grouped components
Hyo-Il Park and
Seung-Man Hong
Journal of Applied Statistics, 2010, vol. 37, issue 5, 767-778
Abstract:
In this paper, we consider a nonparametric test procedure for multivariate data with grouped components under the two sample problem setting. For the construction of the test statistic, we use linear rank statistics which were derived by applying the likelihood ratio principle for each component. For the null distribution of the test statistic, we apply the permutation principle for small or moderate sample sizes and derive the limiting distribution for the large sample case. Also we illustrate our test procedure with an example and compare with other procedures through simulation study. Finally, we discuss some additional interesting features as concluding remarks.
Keywords: grouped data; liner rank statistic; multivariate data; nonparametric test; permutation principle (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902889973 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:5:p:767-778
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902889973
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().