Semiparametric analysis for case-control studies: a partial smoothing spline approach
Young-Ju Kim
Journal of Applied Statistics, 2010, vol. 37, issue 6, 1015-1025
Abstract:
Case-control data are often used in medical-related applications, and most studies have applied parametric logistic regression to analyze such data. In this study, we investigated a semiparametric model for the analysis of case-control data by relaxing the linearity assumption of risk factors by using a partial smoothing spline model. A faster computation method for the model by extending the lower-dimensional approximation approach of Gu and Kim 4 developed in penalized likelihood regression is considered to apply to case-control studies. Simulations were conducted to evaluate the performance of the method with selected smoothing parameters and to compare the method with existing methods. The method was applied to Korean gastric cancer case-control data to estimate the nonparametric probability function of age and regression parameters for other categorical risk factors simultaneously. The method could be used in preliminary studies to identify whether there is a flexible function form of risk factors in the semiparametric logistic regression analysis involving a large data set.
Keywords: case-control data; partial smoothing spline; penalized likelihood; smoothing parameter; semiparametric (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903008979 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:6:p:1015-1025
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903008979
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().