Bayesian and DEA efficiency modelling: an application to hospital foodservice operations
K. M. Matawie and
A. Assaf
Journal of Applied Statistics, 2010, vol. 37, issue 6, 945-953
Abstract:
The significant impact of health foodservice operations on the total operational cost of the hospital sector has increased the need to improve the efficiency of these operations. Although important studies on the performance of foodservice operations have been published in various academic journals and industrial reports, the findings and implications remain simple and limited in scope and methodology. This paper investigates two popular methodologies in the efficiency literature: Bayesian “stochastic frontier analysis” (SFA) and “data envelopment analysis” (DEA). The paper discusses the statistical advantages of the Bayesian SFA and compares it with an extended DEA model. The results from a sample of 101 hospital foodservice operations show the existence of inefficiency in the sample, and indicate significant differences between the average efficiency generated by the Bayesian SFA and DEA models. The ranking of efficiency is, however, statistically independent of the methodologies.
Keywords: Bayesian SFA; DEA; efficiency; hospitals (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902949058 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:6:p:945-953
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902949058
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().