EconPapers    
Economics at your fingertips  
 

Bayesian and DEA efficiency modelling: an application to hospital foodservice operations

K. M. Matawie and A. Assaf

Journal of Applied Statistics, 2010, vol. 37, issue 6, 945-953

Abstract: The significant impact of health foodservice operations on the total operational cost of the hospital sector has increased the need to improve the efficiency of these operations. Although important studies on the performance of foodservice operations have been published in various academic journals and industrial reports, the findings and implications remain simple and limited in scope and methodology. This paper investigates two popular methodologies in the efficiency literature: Bayesian “stochastic frontier analysis” (SFA) and “data envelopment analysis” (DEA). The paper discusses the statistical advantages of the Bayesian SFA and compares it with an extended DEA model. The results from a sample of 101 hospital foodservice operations show the existence of inefficiency in the sample, and indicate significant differences between the average efficiency generated by the Bayesian SFA and DEA models. The ranking of efficiency is, however, statistically independent of the methodologies.

Keywords: Bayesian SFA; DEA; efficiency; hospitals (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902949058 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:6:p:945-953

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760902949058

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:37:y:2010:i:6:p:945-953