How to compare interpretatively different models for the conditional variance function
Ilmari Juutilainen and
Juha Roning
Journal of Applied Statistics, 2010, vol. 37, issue 6, 983-997
Abstract:
This study considers regression-type models with heteroscedastic Gaussian errors. The conditional variance is assumed to depend on the explanatory variables via a parametric or non-parametric variance function. The variance function has usually been selected on the basis of the log-likelihoods of fitted models. However, log-likelihood is a difficult quantity to interpret - the practical importance of differences in log-likelihoods has been difficult to assess. This study overcomes these difficulties by transforming the difference in log-likelihood to easily interpretative difference in the error of predicted deviation. In addition, methods for testing the statistical significance of the observed difference in test data log-likelihood are proposed.
Keywords: conditional variance; variance function; predictive likelihood; log-scoring rule; predictive density; out-of-sample testing; model performance measure (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760902984642 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:6:p:983-997
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760902984642
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().