On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests
Fabio Principato,
Angela Vullo and
Domenica Matranga
Journal of Applied Statistics, 2010, vol. 37, issue 8, 1335-1354
Abstract:
Implementation of the Gibbs sampler for estimating the accuracy of multiple binary diagnostic tests in one population has been investigated. This method, proposed by Joseph, Gyorkos and Coupal, makes use of a Bayesian approach and is used in the absence of a gold standard to estimate the prevalence, the sensitivity and specificity of medical diagnostic tests. The expressions that allow this method to be implemented for an arbitrary number of tests are given. By using the convergence diagnostics procedure of Raftery and Lewis, the relation between the number of iterations of Gibbs sampling and the precision of the estimated quantiles of the posterior distributions is derived. An example concerning a data set of gastro-esophageal reflux disease patients collected to evaluate the accuracy of the water siphon test compared with 24 h pH-monitoring, endoscopy and histology tests is presented. The main message that emerges from our analysis is that implementation of the Gibbs sampler to estimate the parameters of multiple binary diagnostic tests can be critical and convergence diagnostic is advised for this method. The factors which affect the convergence of the chains to the posterior distributions and those that influence the precision of their quantiles are analyzed.
Keywords: Gibbs sampler; Bayesian analysis; convergence diagnostics; diagnostic tests; gastro-esophageal reflux disease (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903030239 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:8:p:1335-1354
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903030239
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().