EconPapers    
Economics at your fingertips  
 

A real survival analysis application via variable selection methods for Cox's proportional hazards model

Emmanouil Androulakis, Christos Koukouvinos, Kalliopi Mylona and Filia Vonta

Journal of Applied Statistics, 2010, vol. 37, issue 8, 1399-1406

Abstract: Variable selection is fundamental to high-dimensional statistical modeling in diverse fields of sciences. In our health study, different statistical methods are applied to analyze trauma annual data, collected by 30 General Hospitals in Greece. The dataset consists of 6334 observations and 111 factors that include demographic, transport, and clinical data. The statistical methods employed in this work are the nonconcave penalized likelihood methods, Smoothly Clipped Absolute Deviation, Least Absolute Shrinkage and Selection Operator, and Hard, the maximum partial likelihood estimation method, and the best subset variable selection, adjusted to Cox's proportional hazards model and used to detect possible risk factors, which affect the length of stay in a hospital. A variety of different statistical models are considered, with respect to the combinations of factors while censored observations are present. A comparative survey reveals several differences between results and execution times of each method. Finally, we provide useful biological justification of our results.

Keywords: variable selection; survival analysis; Cox's proportional hazards model; nonconcave penalized likelihood; high-dimensional dataset; trauma (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903038406 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:8:p:1399-1406

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664760903038406

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:37:y:2010:i:8:p:1399-1406