ARFIMA processes and outliers: a weighted likelihood approach
Claudio Agostinelli and
Luisa Bisaglia
Journal of Applied Statistics, 2010, vol. 37, issue 9, 1569-1584
Abstract:
In this paper, we consider the problem of robust estimation of the fractional parameter, d, in long memory autoregressive fractionally integrated moving average processes, when two types of outliers, i.e. additive and innovation, are taken into account without knowing their number, position or intensity. The proposed method is a weighted likelihood estimation (WLE) approach for which needed definitions and algorithm are given. By an extensive Monte Carlo simulation study, we compare the performance of the WLE method with the performance of both the approximated maximum likelihood estimation (MLE) and the robust M-estimator proposed by Beran (Statistics for Long-Memory Processes, Chapman & Hall, London, 1994). We find that robustness against the two types of considered outliers can be achieved without loss of efficiency. Moreover, as a byproduct of the procedure, we can classify the suspicious observations in different kinds of outliers. Finally, we apply the proposed methodology to the Nile River annual minima time series.
Keywords: ARFIMA processes; outliers; robust estimation; weighted likelihood (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664760903093609 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:37:y:2010:i:9:p:1569-1584
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664760903093609
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().