EconPapers    
Economics at your fingertips  
 

A segmented regime-switching model with its application to stock market indices

Beibei Guo, Yuehua Wu, Hong Xie and Baiqi Miao

Journal of Applied Statistics, 2011, vol. 38, issue 10, 2241-2252

Abstract: This paper evaluates the ability of a Markov regime-switching log-normal (RSLN) model to capture the time-varying features of stock return and volatility. The model displays a better ability to depict a fat tail distribution as compared with using a log-normal model, which means that the RSLN model can describe observed market behavior better. Our major objective is to explore the capability of the model to capture stock market behavior over time. By analyzing the behavior of calibrated regime-switching parameters over different lengths of time intervals, the change-point concept is introduced and an algorithm is proposed for identifying the change-points in the series corresponding to the times when there are changes in parameter estimates. This algorithm for identifying change-points is tested on the Standard and Poor's 500 monthly index data from 1971 to 2008, and the Nikkei 225 monthly index data from 1984 to 2008. It is evident that the change-points we identify match the big events observed in the US stock market and the Japan stock market (e.g., the October 1987 stock market crash), and that the segmentations of stock index series, which are defined as the periods between change-points, match the observed bear-bull market phases.

Keywords: algorithm; change-point; log-normal; log-returns; Markov process; maximum likelihood estimation; segmented regime-switching model; stock market index; time series (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.tandfonline.com/doi/abs/10.1080/02664763.2010.545374 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:10:p:2241-2252

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20

DOI: 10.1080/02664763.2010.545374

Access Statistics for this article

Journal of Applied Statistics is currently edited by Robert Aykroyd

More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:japsta:v:38:y:2011:i:10:p:2241-2252