Sensitivity analysis of linear time-invariant compartmental models with steady-state constraint
Suzan Gazioğlu and
E. Marian Scott
Journal of Applied Statistics, 2011, vol. 38, issue 11, 2485-2509
Abstract:
Compartmental models have been widely used in modelling systems in pharmaco-kinetics, engineering, biomedicine and ecology since 1943 and turn out to be very good approximations for many different real-life systems. Sensitivity analysis (SA) is commonly employed at a preliminary stage of model development process to increase the confidence in the model and its predictions by providing an understanding of how the model response variables respond to changes in the inputs, data used to calibrate it and model structures. This paper concerns the application of some SA techniques to a linear, deterministic, time-invariant compartmental model of global carbon cycle (GCC). The same approach is also illustrated with a more complex GCC model which has some nonlinear components. By focusing on these two structurally different models for estimating the atmospheric CO 2 content in the year 2100, sensitivity of model predictions to uncertainty attached to the model input factors is studied. The application/modification of SA techniques to compartmental models with steady-state constraint is explored using the 8-compartment model, and computational methods developed to maintain the initial steady-state condition are presented. In order to adjust the values of model input factors to achieve an acceptable match between observed and predicted model conditions, windowing analysis is used.
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/02664763.2011.559207 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:japsta:v:38:y:2011:i:11:p:2485-2509
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/CJAS20
DOI: 10.1080/02664763.2011.559207
Access Statistics for this article
Journal of Applied Statistics is currently edited by Robert Aykroyd
More articles in Journal of Applied Statistics from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().